

### MEMS用設計・解析支援システム MemsONEメッシュ分割手法の紹介



前田 幸久

# 「そ 1. MemsONEにおけるメッシュ分割機能の種類



立体毎、軸方向毎にサイズ指示

#### ③4面体メッシュ



立体又は構成面毎に サイズ指示

#### ロシェル要素、2次元メッシュ

⑤4角形メッシュ、3角形メッシュ

#### ②シェル要素のSWEEP(6面体、5面体)



構成面毎、sweep方向毎にサイズ指示

#### ④6面体と4面体の組み合わせ



4角形と3角形の結合例



# 🎼 2.メッシュ分割機能の特徴比較

| NO | 作成される有限要素                    |                                | 分割対象形状                   | 立体毎のメッシュ分割の<br>逐次性                                           | 補足                                             |
|----|------------------------------|--------------------------------|--------------------------|--------------------------------------------------------------|------------------------------------------------|
| 1  | ソリッドメ                        | 6面体メッシュ                        | 多面体立体<br>(曲面系立体<br>は対象外) | <b>全立体を一度に指示</b>                                             | ・立体毎、座標軸毎のサイズ指示<br>が可能(*)                      |
| 2  | ッ<br>シ<br>ュ                  | シェル <mark>要素</mark> の<br>sweep | シェル要素                    | 構成面単位で、シェル<br>要素を逐次sweep                                     | ・構成面毎、Sweep方向毎のサイ<br>ズ指示が可能(*)                 |
| 3  |                              | 4面体メッシュ                        | 曲面系立体も<br>OK             | <ul> <li>立体毎に逐次メッシュ分割可能</li> <li>① ②</li> <li>③ ④</li> </ul> | ・立体毎のメッシュ分割が可能<br>・メッシュデータ量が増大                 |
| 4  |                              | 6面体+4面体                        | 6面体は多面<br>体立体            | 6面体メッシュを最初に<br>作成                                            |                                                |
| 5  | シェル要素<br>2次元メッシュ<br>・4角形、3角形 |                                | 複合面の<br>構成面<br>(曲面もOK)   | <b>逐次処理方式</b> <ol> <li>②</li> <li>④</li> <li>④</li> </ol>    | 3次元シェル要素<br>3次元軸対称要素<br>2次元解析用要素(平面歪、平面<br>応力) |

(\*) 薄膜の積層構造の多いMEMSでは必須



# ○ 3. メッシュ分割機能の内部処理ロジック概要





# 🎼 3. メッシュ分割機能の内部処理ロジック概要(続き)

| NO | メッシュ分割手法                     | 内部の処理ロジック概要                                                                                                | 備考                                          |
|----|------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 2  | シェル要素のsweep                  | シェル要素を一定の方向にsweepし、ソリッドメッシ<br>ュを作成する。(立体も同時に作成される。)<br>アルゴリズム的には安定しており、原則として、<br>必ずメッシュが生成される。             | Sweep方向にテーパ角<br>のない形状であれば、<br>適用可能          |
| 3  | 4面体メッシュ                      | Step1)立体の境界線上にメッシュ節点を求める<br>Step2) 境界線上の節点を元に、立体の構成面を<br>3角形分割する<br>Step3)立体の構成面の3角形をもとに、<br>立体内部を4面体分割する。 | 概ね安定的に作成される                                 |
| 4  | 6面体+4面体                      | 上記、6面体メッシュ作成と、4面体メッシュ作成の<br>組み合わせ                                                                          |                                             |
| 5  | シェル要素<br>2次元メッシュ<br>・4角形、3角形 | Step1)立体の境界線上にメッシュ節点を求める<br>Step2)境界線上の節点を元に、立体の構成面を3<br>角形分割する。<br>補)Step1,Step2は、4面体メッシュ分割と同じ            | 概ね安定的に作成される。<br>4角形指示の場合でも<br>3角形が発生することあり。 |

### 🌃 4.6面体メッシュ分割の手法

6面体メッシュ分割が出来ない場合の対応手法

①<u>メッシュサイズを変更してトライ</u>

・まづ、最初に、サイズを変更してみる。

特に、薄い立体や、狭い幅の溝/梁を持つ形状に対して、大きなメッシュサイズ
 を指定してエラーになった場合は、メッシュサイズをよききめ細かに変更すること
 でOKとなる場合有り。

== 以下は、サイズ変更でNGの場合の対応方法を紹介する ==

6面体メッシュ分割できない場合、内部処理的に実空間モデルと直交モデルとの 位相対応付けで失敗していることが多い。

→対応付けを成功させるため、実モデル立体の位相情報を追加する手法(考え 方)を説明する。

### 🏠 4.6面体メッシュ分割の手法(続き)

②<u>立体を分割する</u>···メッシュサイズの細分化のための立体分割と同じ手法

例)直方体上に円柱が乗っているモデル(円柱:斜め境界線が多い)



直交空間での底面近辺での位相の 対応に失敗した場合を想定

(補) V30では、この形状パターンは、 本手法を適用しなくても、概ねOK 直方体の中心部分を円柱形状で分割



# 🌃 4.6面体メッシュ分割の手法(続き)

### ③境界線の附加

メッシュ分割対象立体に対し、直接境界線を追加する (位相変更機能/境界線附加コマンドを使用)

例)(境界線附加をしなくても、メッシュ分割が可能なパターン) 境界線附加により、位相対応付けが変化し、結果、作成されるメッシュも変化する様子を示す。



○の部分に境界線を附加

# ▲ 6面体メッシュ分割の手法(続き)

④6面体メッシュ に 4面体メッシュを接続

基板部分あるいは主要立体を6面体メッシュ分割し、残りの立体を4面体分割する

例) 基板上に、円筒(曲面)と三角柱を附加したモデル。(人エモデル)



# ○ 5.メッシュ分割に関わる周辺機能と留意事項

#### ①メッシュの検査コマンド

179度以上の内角をもつ検査結果に対する、 6面体の自動分割オプション(紹介)

| メッシュ検査 X          | 1   |
|-------------------|-----|
| 有限要素の形状検査         |     |
| □ アスペクト比 0.01 より小 |     |
| □ 体積比 0.001 より小   |     |
| □ 面積比 0.01 より小    | l e |
| ☑ 広い内角(1角形・六面体)   | 1 - |
| 179 度以上           |     |
| 有限要素の接続性検査        |     |
| □ フリーエッジ          |     |
| □ シェル要素の表裏        |     |
| 髭の長さ 10           |     |
| 有限要素の数検査          |     |
| □ 有限要素の数          |     |
| OK ++v)セル         |     |

該当する6面体メッシュが存在する場合、 6面体を2つの5面体に分割して、

179度以上の内角を解消するオプション 機能あり。



### ○ 5.メッシュ分割に関わる周辺機能と留意事項(続き)

- ②集合演算や切断分離後の、材質情報の確認と再設定(留意事項)
  - ・立体の集合演算→切断分離を行うと、立体の内部IDが変更され、それまで立体に 附加されていた材質情報が変わります。
  - →材質情報の確認(材質番号による表示ONOFF)を行い、必要あれば、材質情報 を再設定してください。
- ③立体削除とメッシュ削除の順番(留意事項)
  - ・メッシュが作成されてい立体を削除する際は、原則として、メッシュの削除のあと、
     立体の削除を行ってください。(立体の削除ではメッシュは削除されません)
     (メッシュ削除の前に立体削除を行った場合は、モデル全体のメッシュ削除を使用してください)

④FEMデータの一括削除

- ・何らかの原因により、メッシュデータや解析条件データが利用できなくなった場合、
   幾何要素以外のデータを一括削除し、幾何要素から作業を再開する為の運用上の
   特殊機能です。
- ・FEM関連データとして、有限要素、解析条件データ、材質情報を全て削除します。

# ○ 6.3次元メッシュ分割手法の適用ガイドのまとめ

