解析事例紹介

MemsONEによる 面内および面外の2自由度駆動を 実現する静電アクチュエータの シミュレーション

東京大学 生産技術研究所 藤田博之研究室

修士2年 岡田 利裕 Toshihiro Okada

岡田 利裕

MEMSデバイスのモデル

梁の変形と同時に針が移動するMEMSデバイス

駆動電圧と針の先端の変位との関係を予測

MEMSデバイスの目的

針の先端に金、銀などの材料を蒸着 針どうしを接触、その後伸張、摩擦などを与えたときの 材料の挙動を原子レベルでリアルタイム観察

ナノスケールでの材料の物性を知る

材料の観察手法

TEM

Transmission Electron Microscope 透過(型)電子顕微鏡

当研究室の保有する TEM装置

MEMSとTEMの融合

TEMの特長

ナノスケール、原子レベルで 材料のリアルタイム観察が可能

こうしたTEMの特長を活かすシステム… 材料に機械的動作を与える微細なシステム

MEMS Micro Electro Mechanical Systems

TEM観察用MEMSデバイス

TEMの試料ホルダに装着された MEMSデバイス

材料を蒸着する針を備える 針を支える梁を**静電引力**で駆動

デバイスのサイズ 数mm四方 試料ホルダに装着可能

2自由度

TEM用MEMSデバイスの問題点

接触点が隠れていると観察不能 歩留まりが非常に低い 1%程度の場合も

30nm 程度のずれで観察不能になるとされる (当研究室の先行研究より)

問題点の解決方法

針を基板に垂直方向に駆動 面外方向に駆動するアクチュエータの追加

垂直方向のずれをTEM実験のときに補正

面外方向への駆動方法

SOI基板のハンドル層に 電極を形成 静電引力で直接梁と針を 基板に垂直方向に駆動

駆動電圧の 梁と電極を 針の先端を 含む断面図 印加 含む断面図 SOI基板のデバイス層に 厚さの異なる電極を形成 非対称な電界で梁をひねり 針を基板に垂直方向に駆動 シミュレーション、

デバイス作製

デバイス作製

デバイスの動作の予測

駆動電圧と針の先端の変位との関係を知る 面内、面外方向の駆動を独立して制御できないなか どう操作するかの指針を立てる

電圧の印加 静電引力の発生 構造の弾性変形

ひねりについて理論から求めるのが難しい

MemsONEの 「弾塑性解析と電界解析」の連成解析 を利用

シミュレーションの手順

予備 連成解析 適当なメッシュ分割のもとで、応力集中部の場所や 静電引力のおおよその値の見積もり

力学解析 梁に機械的に圧力を加えた場合の変形を予測 メッシュ分割の細かさを検討

連成解析 実際の構造に近い条件で予測

シミュレーションの条件

針の先端に相当する 点Pの変位 x成分 Δx z成分 Δz

針の長さ方向 *x*軸 梁の長さ方向 *y*軸 基板の法線方向 *z*軸

予備解析

 l_{v}

予備解析の結果 画面

2011年12月16日

予備解析の結果 応力集中部

梁の固定端付近に最も応力が集中して 直感的なイメージと同じとなっていることを確認した

梁の中央付近もやや応力が集中する傾向が 見られることを確認した

その他空気層のメッシュ分割について x方向のメッシュの大きさを変えても ほとんど影響がないことを確認した

この予備解析の結果を以後のシミュレーションにおける メッシュ分割の参考にする

予備解析の結果 静電引力

梁について 1要素あたり 電極A側の面 約75nN 電極B側の面 約70nN の静電引力を受けていることが分かった

1要素について電極側と向かい合う面積は 約40µm² であるから 梁が受ける静電引力は 電極A側の面 約1.80kPa 電極B側の面 約1.75kPa として次のシミュレーションを行うことにする

力学解析

「弾塑性変形」の「力学解析」を利用

メッシュの大きさと変形との関係を調べ、 連成解析における要素分割の参考にする

実際のデバイスのうち 梁の部分のみを 抽出したモデル

予備解	都で	得ら	れた
静電引	力に	相当	する
圧力を	加え	る	

 $\Delta x \, heta P_A の変位の x 成分$ $\Delta z_A \, heta P_A の変位の z 成分$ $\Delta z_B \, heta P_B の変位の z 成分$ $\Delta z = |\Delta z_A - \Delta z_B|$

力学解析 1-1

 l_{v}

解析の条件 [メッシュの大きさ] (梁) *l_y* を変化させる *l_x* 5µm *l_z* 8µm *l_y* は全体で一定とする

2011年12月16日

力学解析 1-1 結果

力学解析 1-2

解析の条件 [メッシュの大きさ] (梁) *l*_y を変化させる *l*_x 5µm *l*_z 8µm *l*_y の比率は (固定端付近) 5 (中央付近) 8 (その他) 10 とする

応力集中部の メッシュの大きさを 小さくしたシミュレーション

1個の

要素

 l_x

 l_z

力学解析 1-2 結果

力学解析 2

解析の条件 [メッシュの大きさ] (梁) l_z を変化させる l_x 3µm l_y 固定端付近 5µm 中央付近 8µm その他 10µm l_z は全体で一定とする

1個の

要素

 l_x

 l_z

v

力学解析 2 結果

岡田 利裕

解析の条件 [メッシュの大きさ] (梁) *l_x* を変化させる *l_y* 固定端付近 5µm 中央付近 8µm *l_z* 8µm *l_z* 8µm *l_x* は全体で一定とする

1個の

要素

 l_x

 l_z

v

力学解析 3 結果

岡田 利裕

力学解析の結果 画面

2011年12月16日

力学解析の結果

変位の予測とメッシュの大きさとの関係

 l_y に大きく依存する l_y を小さくしていくとき、 $l_y = 3 \sim 5 \mu m$ 程度でほぼ収束する

 l_z に少し依存する l_x にほとんど依存しない

計算時間とのバランスをとり、*l_y*は 固定端付近で 5µm、中央付近で 8µm、 その他で 10µm、*l_x*は 5µm、*l_z*は 8µm として 連成解析を実行する

「弾塑性解析と電界解析」の連成解析を利用

実際に作製しようとするデバイスに近い モデルについてシミュレーション

⊿x が 300 - 500nm 程度、 |⊿z| が 30 – 50nm か それ以上 を目標とする

連成解析の結果 画面 変位と応力

2011年12月16日

連成解析の結果

シミュレーションで得られた成果

作製しようとするデバイスについて 所望する動作が得られることが分かった

実際にTEMで材料を観察するときに 駆動電圧をどう変化させるかの 指針を立てるにあたり参考になった

現在、デバイスの作製と動作確認を行っている 今後の材料の観察に実用化を目指している

以上で終了です。 ありがとうございました。