

One MIZUHO

中性粒子ビームの生成メカニズムのシミュレーション

みずほ情報総研(株)¹ BEANS研究所² 東京大学³ 東北大学⁴ ⁰渡辺尚貴¹ 大塚晋吾¹ 小野耕平¹ 入江康郎¹ 杉山正和^{2,3} 久保田智広^{2,4} 寒川誠二^{2,4}

2014年2月4日 MemsONE技術交流会

中性粒子ビームの数値シミュレーション

装置の概要

印加バイアスでイオンをアパーチャへ誘導
アパーチャ側壁にイオンが衝突して中性化
中性粒子で高精度エッチングを実現

数値シミュレーションの構成

イオンの中性化率の予測 イオンとアパーチャ間の電子移動を計算 中性粒子ビームの角度分布の予測 シース電界・衝突のイオン軌道を計算 中性粒子ビームのエッチング形状の予測 表面反応モデルでエッチング過程を計算

中性化率の予測シミュレーション

実験の事実 ロアパーチャ通過粒子が中性化 ロ正負イオンで異なる中性化率

現象の推測

アパーチャ側壁とイオンの

衝突時に電子が移動して中性化
電子の移動は量子力学的現象

S. Samukawa, J. J. Appl. Phys. 45, 2395 (2006)

計算の目的

正イオン中性化率約

60%

MIZHO

量子電子動力学計算で中性化のメカニズムを理解する
 高中性化率となるイオンとアパーチャの材料を探す

電子移動の量子力学計算モデル

計算系 アパーチャ基板: 照射粒子: CI⁻ CI Cl₂⁺ Cl₂ 照射速度: 12eV 25eV 50eV 100eV 炭素24原子のグラファイト 照射角度: 0度(垂直) 15度 30度 45度 60度 incident angle 計算内容 衝突過程でのイオンとアパーチャの約100個の電子の波動関数の数100fsecの 時間発展を時間依存Kohn-Sham方程式に基づいて量子力学的に数値計算した。 $i\hbar\frac{\partial}{\partial t}\phi_{n}(\mathbf{r},t) = \left|-\frac{\hbar^{2}}{2m}\Delta + V_{\text{ions}}^{\text{PP}}(\mathbf{r},t) + V_{\text{HXC}}[\rho(t)]\right|\phi_{n}(\mathbf{r},t); \quad \rho(\mathbf{r},t) = \sum_{n} \left|\phi_{n}(\mathbf{r},t)\right|^{2}$ 長時間発展を安定かつ高速に計算する量子電子動力学シミュレータを開発した。 **MIZHO**

量子電子動力学シミュレータ 実空間・実時間法で空間に広がる波動関数の時間発展を計算 超長時間の時間発展計算が可能な独自アルゴリズムを実装 $\varphi_n(\mathbf{r},t+\Delta t) \cong \exp\left[\frac{i\Delta t}{4}\Delta\right] \exp\left[-i\Delta t\left(V_{int}[\rho']+V_{ext}(t+\frac{\Delta t}{2})\right)\right] \exp\left[\frac{i\Delta t}{4}\Delta\right] \varphi_n(\mathbf{r},t)$

N. Watanabe and M. Tsukada, P.R.E, Vol 62, No 2, 2914 (2000)、P.R.E, Vol 65, No 3, 036705 (2002). http://www.mizuho-ir.co.jp/solution/research/semiconductor/nano

応用分野:

衝突過程での電子密度分布の時間変

 $\rho(\mathbf{r},t) = \sum_{n} \left| \phi_{n}(\mathbf{r},t) \right|^{2}$ 粒子の電子と基板の電子が交換。
不均衡な交換で粒子の電子数が変化。

衝突過程での電子密度分布の時間変

 $\rho(\mathbf{r},t) = \sum_{n} \left| \phi_{n}(\mathbf{r},t) \right|^{2}$ 粒子の電子と基板の電子が交換。
不均衡な交換で粒子の電子数が変化。

衝突後の粒子の価電子数の評価

衝突後の価電子数の期待値

Cl₂⁺の多重衝突の効果

粒子はアパーチャ通過時に側壁に多数回衝突する。 Cl₂+は確率αで中性化しても2回目の衝突で確率βでイオン化する。

粒子の角度分布の予測シミュレーション

アパーチャ進入角度の分布の計算

アパーチャ上部にはシース電界が発生し、加速イオンの軌道が曲がる。シース電界とイオン軌道を計算し、アパーチャ進入時の角度分布を計算。

MIZHO

アパーチャ衝突回数の分布の計算

曲がって進入したイオンはアパーチャ通過中に側壁と非弾性衝突を繰り返す。 非弾性衝突を二体散乱近似モデルで計算し、アパーチャ通過中の衝突回数を計算。

計算された粒子の側壁との衝突回数の分布。 粒子は1、2回は側壁に衝突する。

Mizuho Information & Research Institute, Inc.

ギーを失って反射する確率モデル。

20

アパーチャ出力角度の分布の計算

アパーチャ出力時の中性粒子の角度分布を計算。

チャ径を変えての計算

MIZHO

アパーチャプレートの材質を変えての計算

まとめ

- 第一原理電子状態計算でイオンの中性化率を予測した。
- ・ 負イオンの高い中性化率:電子がイオンから落ち易いため。
- ・ 正イオンの低い中性化率:電子がイオンに戻り易いため。

粒子軌道計算で中性粒子のアパーチャ通過軌道を予測した。

- ・シース電界によってイオンはアパーチャ側壁に1,2回衝突する。
- アパーチャのアスペクト比に応じて出力角度はコリーメートされる。